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Abstract —In many eddy current problems solved by EM,
meshing of the skin depth leads to CAD difficultiesand heavy
computational effort. That can be avoided using dedated
elements such surface impedances for perfect condacs, or
shell elements for arbitrary electromagnetic medium We
present the basic principles of a shell element wtti is suitable
for harmonic response and fully compatible with theelectric
and magnetic formulations used in Code Carmel3D. We
conclude with a first elementary test from the NDTdomain,
dealing with the effect of a thin copper deposit athe surface of
a steel tube.

|. INTRODUCTION
Shell elements have been implemented in indusiridl
commercial electromagnetic codes since the midiiR0Es
[1], mainly dedicated to shielding applicationsa&, much
work has been done to take into account for thee tim
domain or integrate it with other formulation [$3]. Since
2000, the electric and magnetic 3D formulationseims of
potential used by Code Carmel3D [2] of L2EP
(Laboratoire d’Electronique et d’Electrotechnique ldlle)
and EDF covers a large scope of non-linear, chonitpled
static or rotating machines as well as NDT appilicet [2].
We propose a new thin shell magnetic and conduditiitg
element compatible with the #-and T-Q formulations
associated to the Whitney's element.

Il. THE CONTINUOUS MODEL OF THIN PLATE

The magnetic fieldH is null-divergence and must
verify in the volume of the shell:
AH —iwuoH =0. 0}

For a thin volume with neutral surfac®, currently two
hypothesis are made : first, thigat plate’ allows to neglect
curvatures in laplacian development of (1) in local
coordinates(x, y,z) and to split the variations dfi on S
noted H,(x y) and in depth noted(z):

H(xy,2)=a(dHs(xy). @)

Second, thé'surface invariarit hypothesis consists in
neglecting the skin depthd = (o)™ ° reported to the
caracteristic length oHg on S, which allows analytical
integration of (1) in the depth:

H(xy.2)=a" (2Hs(xy)+a" (ZH(x.y). ()

wherea”(z) anda’(2) are hyperbolic shape functions
easy to calculateli; and Hy are values oH on faces.

Note that an important consequence of the invariant
hypothesis is the normal component of any vecteldfi
solution of (1) is small compared to the tangentak.
Besides, the thickness of the plaBe only impacts the

frequencial behavior: ife< 0, a so-called “thin layer” is
obtained, ife> J, a “recto-verso impedance” results.

It will be efficient to reduce the continuous mog@) to
the following integral identity:

ZTe((aZH)Z +idouH?)dz = oy {::}[C] {:} @

[C] is a (6x6) symmetric matrix dependingdrand e.

. THE HOST FINITE ELEMENT FORMULATIONS

We import the model (3) in both electric and magnet
formulations the finite element domain of which is
composed of conducting volumesV, bounded byS,
included in a magnetic volumé, bounded bysS, :
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Fig. 1: Magnetic and conducting domains
Note that there is no need to represent the sourdbat
case and that the electric field outside the cotmitsacis
ignored by quasi-static approximation. The variadio

approach states that:

A. Electric formulation (A-¢)
The vector potentialA in V, such asB =0xA and the
scalar potentigh in V, such askE = —-iwA -0O¢ minimize
the following form with imposed s xn and J [ :

F(A.9)= _[%(EIXA)Z dv, -2[ ATH  xn  dS,
\Y S,

1 ". 2 j - O
+E[ja(|wA+|:|¢) dv, +2S{¢ Jg, DhSUdSJ]

VU
B. Magnetic formulation (T -Q ):

The vector potentiall in V, such asJ =0xT and the
scalar potentialQ in V, such asH =T -0Q minimize
the following form, with imposedg xng andBg (s , and
with Txng =0 on isolated boundaries :

_ 14 24y —
F(T,Q)= E[V{E(DXT) dv, ZSJ;T E »n SUdSU].(G)
+[ u(T-0Q) av, +2[ 0B, M ds,
v S,

u“

Note that the surface integrals vanish in caseid€idet
condition, i.e.,Axng , Txng, ¢ or Q imposed, null or
not.



C. The shell element

U and o are the properties of the shell considered as a
thin volume in the magnetic domain:

Fig. 2: Volume shell in the magnetic domain

The electromagnetic shell functional is the samatasve,
excepting that fields can be identified § only) to their
tangent component and can be writea-e andH =h :

1
= f —0e€ + oAV, )

Condensing directly (7) through the depththanks to (4),
the functional becomes, assuming the plane hypisthes

- in the electric form :[¢s] =0 and jxng =dh:
Z(ag)=

{je (il afolfi e

- in the magnetic form ta.o-ngxh=4a,j :

.
_ 0,0 0.0
7@ = [ ke {DSQ+}[C]{DSQ+}dSC 9)
S

Matrix [C] is coming from (4) andh™, a", Q7, Q" are
vector and scalar magnetic potentials of both fatés. .

Since unknowns are compatible, plugging (8) intd (5
and (9) into (6) can be done using a simple assembl
procedure.

IV. THE CONTINUITY AT INTERFACES
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Fig.3: Sample coupled system for edge continei¢yimg (magnetic case)

Nevertheless, the structure of surface terms ofa(®)
(6) governs the kind of continuity at interfacestloé shell:
on the faces, the continuity is strong for the tamg
magnetic field and the normal current in electdond. It is
the same for the tangent electric field and thenabr
induction in magnetic form. On the edge surfacecthis
not discretised in depth, a lack of strong contineixists,
and as the tangential and normal components areuped,
the normal current in magnetic form and the normal
induction in electric form are relaxed. The contipecan be
restored via Lagrange multipliers which lead, ingmetic
case for example, to a “belt element” (see Figra@yenting
current leakage through isolated sections and egstine
flux transfer on connected one.

The implementation choice of treating the elementa
true surface (supporting or Q jumps) or as a thin volume
(connected to others like in the test below) ialtptfree

V. FIRST ELEMENTARY 2D-TEST

The shell element was tested( A—¢) electric form to
evaluate the impact of a thin copper deposit orettternal
wall of a steel GV tube. Both exact and 2D-appreach
geometry are shown on Fig. 4. The conductivityoradi 50
and a skin depth in copper is taken aradl@@/m.
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Fig. 4. : Copper deposit on a GV tube and his ejent 2D model
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Fig. 5 shows the distorsion of current (or iso-iciitan)
axial lines and of iso-potential cross-sectionshia vicinity
to the deposit. A comparison of induction compuiétth an
“exact” refined mesh (10x30 elements), a “coarsedsim
(1x30 elements) and a “shell” mesh (30 shells) psothat
the average relative error drops frdn01 down to 0,001
when the coarse mesh is replaced by the shell mesh.

10 x 300um deposi

Fig. 5: Perturbation of eddy currents due to & B0Oum deposit
VI. CONCLUSION

A shell electromagnetic finite element easily mieab
with other 3D elements ofCode Carmel3D library is
defined. A great attention is paid to the contiywib edges
so that the coupled model can cope not only wiimdsrd
shielding problems, but also, after some testd; wiitcuit-
shell or shell-shell coupled systems (as faultiaiwal layers
in electrical machine magnetic cores).
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