
Abstract —In many eddy current problems solved by FEM, 
meshing of the skin depth leads to CAD difficulties and heavy 
computational effort. That can be avoided using dedicated 
elements such surface impedances for perfect conductors, or 
shell elements for arbitrary electromagnetic medium. We 
present the basic principles of a shell element which is suitable 
for harmonic response and fully compatible with the electric 
and magnetic formulations used in Code_Carmel3D. We 
conclude with a first elementary test from the NDT domain, 
dealing with the effect of a thin copper deposit at the surface of 
a steel tube. 

I. INTRODUCTION 
Shell elements have been implemented in industrial and 

commercial electromagnetic codes since the middle of 90’s 
[1], mainly dedicated to shielding applications. Since, much 
work has been done to take into account for the time 
domain or integrate it with other formulation [3], [4]. Since 
2000, the electric and magnetic 3D formulations in terms of 
potential used by Code_Carmel3D [2] of L2EP 
(Laboratoire d’Electronique et d’Electrotechnique de Lille) 
and EDF covers a large scope of non-linear, circuit-coupled 
static or rotating machines as well as NDT applications [2]. 
We propose a new thin shell magnetic and conducting finite 
element compatible with the A-ϕ  and Τ−Ω formulations 
associated to the Whitney’s element.  

II. THE CONTINUOUS MODEL OF THIN PLATE 

The magnetic field H  is null-divergence and must 
verify in the volume of the shell:  

0iωµσ∆ − =H H .                  (1) 

For a thin volume with neutral surface S , currently two 
hypothesis are made : first, the “ flat plate”  allows to neglect 
curvatures in laplacian development of (1) in local  
coordinates ( , , )x y z  and to split the variations of H  on S  
noted ( , )S x yH  and in depth noted ( )zα : 

( , , ) ( ) ( , )Sx y z z x yα=H H .                  (2) 

Second, the “surface invariant”  hypothesis consists in 
neglecting the skin depth 0.5( )δ ωµσ −=  reported to the 
caracteristic length of SH  on S , which allows analytical 
integration of (1) in the depth: 

( , , ) ( ) ( , ) ( ) ( , )S Sx y z z x y z x yα α− − + += +H H H .     (3) 

where ( )zα −  and ( )zα +  are hyperbolic shape functions 
easy to calculate, S

−H  and S
+H  are values of S

−H  on faces.   
Note that an important consequence of the invariant 

hypothesis is the normal component of any vector field 
solution of (1) is small compared to the tangential one. 
Besides, the thickness of the plate 2e  only impacts the 

frequencial behavior: if e δ≪ , a so-called “thin layer” is 
obtained, if e δ≫ , a “recto-verso impedance” results. 

It will be efficient to reduce the continuous model (3) to 
the following integral identity: 
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[ ]C is a (6x6) symmetric matrix depending onδ  and e . 

III. THE HOST FINITE ELEMENT FORMULATIONS 

We import the model (3) in both electric and magnetic 
formulations the finite element domain of which is 
composed of conducting volumes  Vσ  bounded by Sσ  
included in a magnetic volume Vµ  bounded by Sµ :  
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Fig. 1: Magnetic and conducting domains  

Note that there is no need to represent the sources in that 
case and that the electric field outside the conductors is 
ignored by quasi-static approximation. The variational 
approach states that: 

A. Electric formulation ( A ϕ− ) 

The vector potential A  in Vµ  such as ∇×B = A  and the 
scalar potentialϕ  in Vσ  such as iω ϕ− − ∇E = A   minimize 
the following form with imposed S Sµ µ

×H n and S Sσ σ
⋅J n :   
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B. Magnetic formulation (T − Ω ): 

The vector potential T  in Vσ  such as ∇×J = T  and the 
scalar potential Ω  in Vµ   such as − ∇ΩH = T  minimize 
the following form, with imposed S Sσ σ

×E n and S Sµ µ
⋅B n , and 

with 0Sσ
× =T n  on isolated boundaries : 
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Note that the surface integrals vanish in case of Dirichlet 
condition, i.e., Sµ

×A n , Sµ
×T n , ϕ  or Ω  imposed, null or 

not. 
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C. The shell element 

Cµ  and Cσ  are the properties of the shell considered as a 
thin volume in the magnetic domain: 
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Fig. 2: Volume shell in the magnetic domain 
 

The electromagnetic shell functional is the same as above, 
excepting that fields can be identified (in CV  only) to their 
tangent component and can be written ≃E e and ≃H h : 
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Condensing directly (7) through the depth z  thanks to (4), 
the functional becomes, assuming the plane hypothesis: 

- in the electric form :  � � 0Sϕ =  and S z× ∂≃j n h : 
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- in the magnetic form : C C S ziωµ σ × ∂≃n h j : 
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Matrix [C] is coming from (4) and −a , +a , −Ω , +Ω  are 
vector and scalar magnetic potentials of both faces of Vc . 

Since unknowns are compatible, plugging (8) into (5) 
and (9) into (6) can be done using a simple assembly 
procedure.  

IV. THE CONTINUITY AT INTERFACES 
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Fig.3:  Sample coupled system for edge continuity testing (magnetic case) 

Nevertheless, the structure of surface terms of (5) and 
(6) governs the kind of continuity at interfaces of the shell: 
on the faces, the continuity is strong for the tangent 
magnetic field and the normal current in electric form. It is 
the same for the tangent electric field and the normal 
induction in magnetic form. On the edge surface which is 
not discretised in depth, a lack of strong continuity exists, 
and as the tangential and normal components are permuted, 
the normal current in magnetic form and the normal 
induction in electric form are relaxed. The continuity can be 
restored via Lagrange multipliers which lead, in magnetic 
case for example, to a “belt element” (see Fig.3) preventing 
current leakage through isolated sections and ensuring the 
flux transfer on connected one. 

The implementation choice of treating the element as a 
true surface (supporting a  or Ω  jumps) or as a thin volume 
(connected to others like in the test below) is totally free 

V. FIRST ELEMENTARY 2D-TEST 

The shell element was tested in( )A ϕ− electric form to 
evaluate the impact of a thin copper deposit on the external 
wall of a steel GV tube. Both exact and 2D-approached 
geometry are shown on Fig. 4. The conductivity ratio is 50 
and a skin depth in copper is taken around100 mµ . 
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Fig. 4. : Copper deposit on a GV tube and his equivalent 2D model  
 

Fig. 5 shows the distorsion of current (or iso-induction) 
axial lines and of iso-potential cross-sections in the vicinity 
to the deposit. A comparison of induction computed with an 
“exact” refined mesh (10x30 elements), a “coarse” mesh 
(1x30 elements) and a “shell” mesh (30 shells) proves that 
the average relative error drops from 0,01 down to 0,001 
when the coarse mesh is replaced by the shell mesh. 

 
Fig. 5:  Perturbation of eddy currents due to a 10 x 300 µm deposit  

VI. CONCLUSION 

A shell electromagnetic finite element easily mixable 
with other 3D elements of Code_Carmel3D library is 
defined. A great attention is paid to the continuity on edges 
so that the coupled model can cope not only with standard 
shielding problems, but also, after some tests, with circuit-
shell or shell-shell coupled systems (as faulty isolated layers 
in electrical machine magnetic cores). 
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